
A Primer in Spinal Cord Injury for SLPs

1.

Introduction

Contact Info

Sarah Kenney, M.S., CCC-SLP

Sutter Rehabilitation Institute (SRI), Roseville, CA (916) 878-2693 (office) sarahkenneyslp@gmail.com

Disclosures

- Financial: None
- Non-financial: None

Learner Objectives

- Define basic concepts re: spinal cord injury (SCI)
- Describe how swallow function and cognition are likely to be impacted in SCI
- Identify common, functional goals and obstacles for individuals with SCI at acute to sub-acute levels

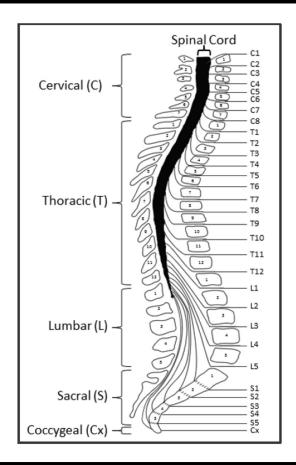
General Considerations

General goals for initial rehabilitation are:

- Facilitate return of swallow function and speech
- Individual to be able to recall SCI-specific mobility/ADL techniques
- Individual ultimately direct own care if needed

Heavy counseling component	Impact on family/caregivers
----------------------------	-----------------------------

SCI Basics

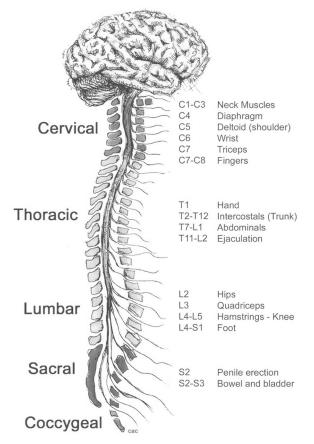

Let's start from the beginning

The Spine

Surrounds and protects the spinal cord (among other things)

Divisions:

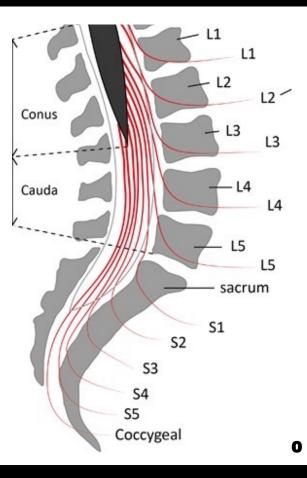
- Cervical: 7
- Thoracic: 12
- ∎ Lumbar: 5
- Sacral: 5 fused together (the sacrum)
- Coccygeal: 3-5 fused together (the coccyx or tailbone)



The Spinal Cord

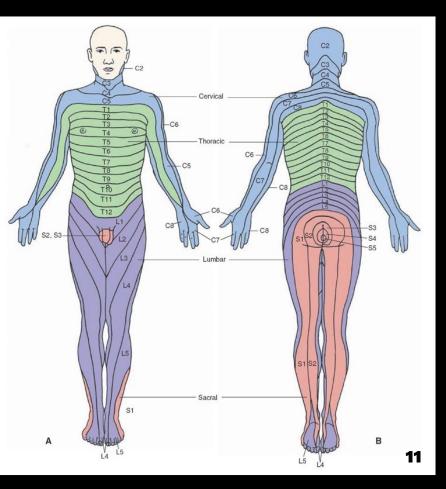
Part of the central nervous system (CNS)

Bundle of nerves running from the base of the brain to the end of the spinal canal


- 31 pairs of matched nerves
- Numbered to match the corresponding vertebra

The Spinal Cord continued

Conus medullaris: the end of the spinal cord proper


Cauda equina: describes where spinal nerve roots continue below the conus medullaris

Dermatomes

Defined areas of skin to which the sensory components of spinal nerves are distributed to specific spinal cord segments

Relay sensory information back to the CNS

Definitions

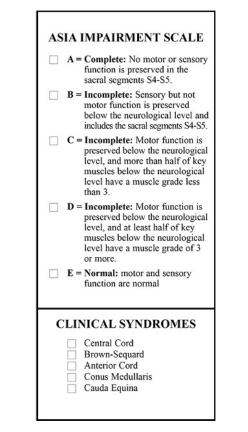
Spinal Cord Injury

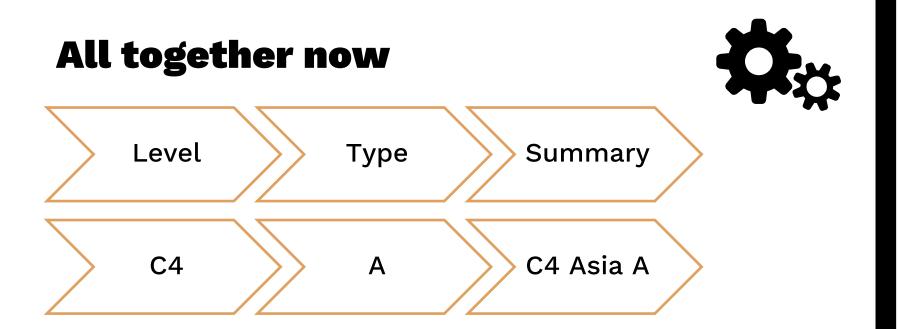
Damage to the spinal cord or to the spinal nerve roots within the spinal canal, resulting in temporary or permanent loss of movement and/or feeling

Tetraplegia/Quadriplegia

Paralysis caused by a cervical injury, with some degree of paralysis in both lumbar, or sacral the upper body and the lower body

Paraplegia


Paralysis that results from a thoracic. injury, with some degree of paralysis in the lower body (but may include the chest)

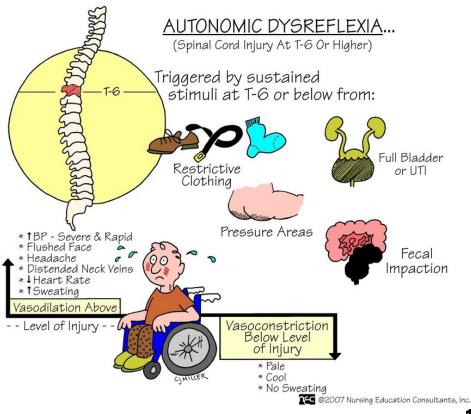

Type of Injury

Complete SCI: defined by no feeling in the anal area and no volitional control of the anus

Incomplete SCI: all other injuries, with various grading based on results of testing

Determined by ASIA testing

"Patient is a 78-year-old with quadriplegia due to C4 ASIA A SCI sustained in a ground-level fall with head strike."


Complications

Autonomic dysreflexia (AD)	Bowel & Bladder	Cardiovascular	Heterotopic ossification (HO)
Pressure ulcers	Spinal shock	Spasticity	VTE

Autonomic dysreflexia is a life-threatening emergency

Find and eliminate the noxious stimulus ASAP

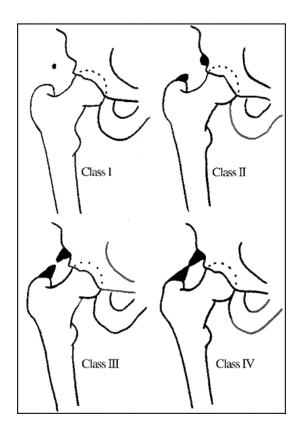
Bowel & Bladder

Bowel

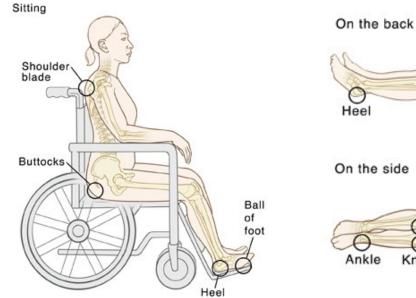
- Incontinence
- Constipation

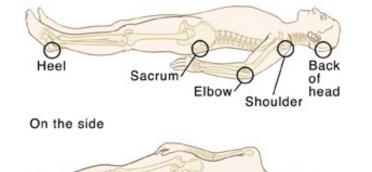
Bladder

- Retention
- Spasticity
- Leakage
- Incontinence
- UTI


Heterotopic ossification

Abnormal growth of bone in soft tissue


Rate of incidence from 16-53% in SCI


Can trigger autonomic dysreflexia

Symptoms can **mimic DVT**

Pressure Ulcers

Hip

area

Ear

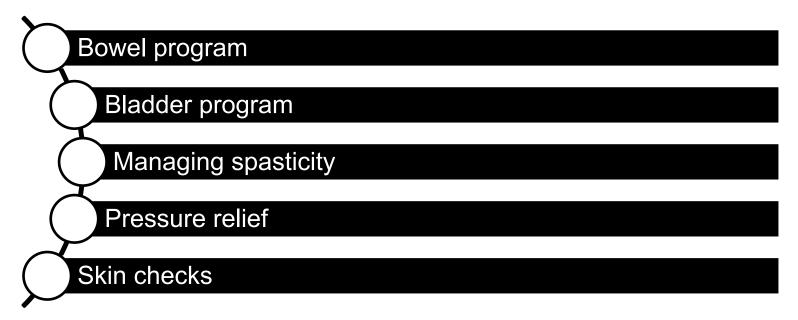
Shoulder

Knee

Spasticity

Benefits

- Use in functional activities
- Alert the individual or caregivers to medical issues that might otherwise be asymptomatic


Problems

- Painful
- Loss of range of motion, contractures
- Safety risks
- Prevent deep breaths
- Poor sleep
- Rubbing skin breakdown
- Hard to control movements

Triggers

- Stretching
- Moving
- Skin irritation
- Pressure ulcers
- UTI or full bladder
- Constipation
- Large hemorrhoids
- Fractures below SCI
- Tight clothing, wraps, binders

SCI-Specific Care Needs

Prognostication

Complete Injuries

- Fairly predictable disabilities
- May recover 1-2 levels of function

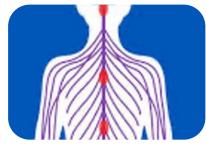
Incomplete Injuries

- Disabilities are unpredictable and complex
- Likely at least some recovery

Common Diagnoses & Injuries

How does this happen?

people in the U.S. living with SCI



17,900 new cases annually total

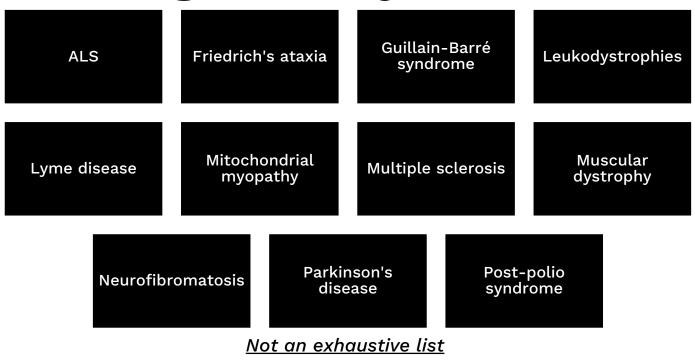
Non-traumatic SCI (NTSCI)

Vertebral body Disc removed Otse being removed



Spinal disorders & diseases

Spinal surgery


Systemic disorders & diseases

NTSCI Diagnoses - Spinal

Not an exhaustive list

NTSCI Diagnoses - Systemic

Traumatic SCI (TSCI)

#1 Motor vehicle crashes

#2 Falls

Followed distantly by sports injuries and medical surgery complications

Dysphagia

SCI-specific, of course

Risk Factors

for dysphagia in cervical SCI \star

- Presence of trach (3x risk)
- Cervical surgery (1.3x risk)
- Injury severity

- Age>72 years
- Bronchoscopy required
- Comorbid brain injury

- Coughing
- Dysphonia
- Nasogastric tube
- Pneumonia

*published studies focus almost exclusively on cervical SCI

Etiologies/Contributors

Baseline osteophytes	Comorbid brainstem trauma or stroke	Trach	Other traumatic injuries
Surgical approach & complications	Cervical hardware	Medications	Level & Type of SCI

Surgical Approach & Complications

Approach

- Anterior cervical discectomy and fusion (ACDF)
- Multi-level surgery

Complications

- Bone graft dislodgement
- Hardware rejection
- Scar tissue
- Denervation
- Infection
- Hematoma

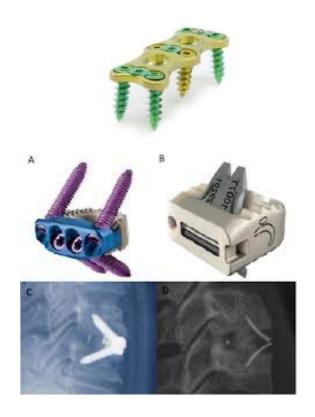
ACDF – Acute & Chronic

Incidence: 1-80% of cases have dysphagia in first 5 days postoperatively

Most common risk factors: more levels operated, female, increased operative time, older age (>60)

Swallow Physiology Changes

- Prevertebral swelling
- Decreased pharyngeal constriction & stripping wave
- Prolonged pharyngeal transit time
- Reduced anterior hyoid excursion
- Reduced opening of UES
- Impaired epiglottic inversion


Chronic Issues (Brady et al, 2004)

- Sent home with undiagnosed dysphagia
- Develop malnutrition or unintentional weight loss in community
- Experience psychosocial impacts of dysphagia

Cervical Hardware

Cervical Hardware Migration

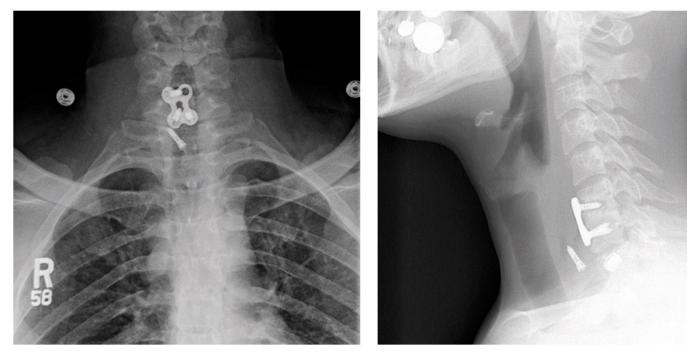


Figure 1

Medication Effects

Direct Impacts

- Dysarthria
- Dysgeusia
- Dysphagia
- GI motility changes
- Reflux, GERD, LPR
- Respiratory depression
- Xerostomia

Systemic & Motivational Impacts

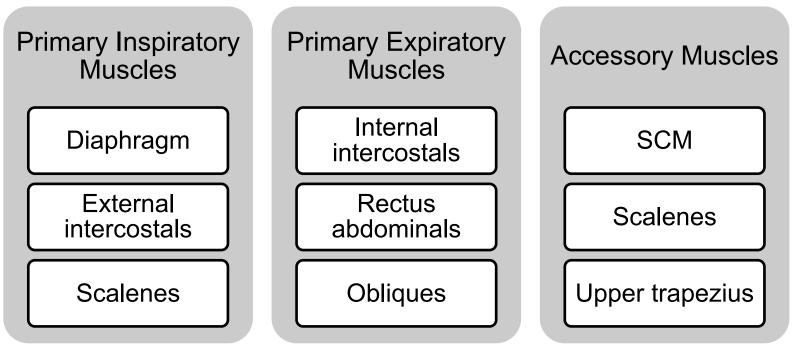
- Anorexia
- Confusion or Memory Impairment
- Depression
- Drowsiness, sedation
- GI Upset
- Nausea, vomiting
- Weakness (asthenia)

Two of the most commonly prescribed medications I see – baclofen and oxycodone – have dysphagia listed as one of their "common" side effects

Level & Type of SCI

High SCI

- Cervical decreased respiratory drive/control, laryngeal dysfunction
- T6 & above gastric emptying, LES relaxation
- · Esophageal and bowel dysmotility


High & Complete SCI

- Longer duration of respirator dependency
- Significantly altered pharyngeal and esophageal pressures

Respiratory complications are the #1 cause of death in chronic SCI

Pneumonia is the #1 respiratory complication

Normal Breathing Physiology

Cervical SCI Respiratory Function

Table 1. Nerve supply of muscles of respiration	
Muscle group	Nerve supply
Diaphragm	C3–C5
Sternocleidomastoid	Spinal portion of accessory nerve, anterior rami of C2, C3
Scalene	
Anticus	C5–C8
Medius	C3–C4
Posterior	C3–C4
Intercostals	Corresponding thoracic segment
Latissimus dorsi	C6–C8
Serratus posterior inferior	T10–T12
Abdominal wall muscles	T7–L1
External oblique	
Internal oblique	
Transversus abdominus	

Table 2. Changes in respiratory function after cervical spinal cord injury		
Pathophysiological change	Mechanism	
Reduced vital capacity	Paralysis of inspiratory muscles Distortion of upper rib cage during inspiration ³⁹ Reduced lung compliance	
Reduced chest wall compliance	Increased tone of intercostal muscles ²⁰ Altered articulation of ribs to sternum and spine ⁴⁰	
Reduced lung compliance	Low functional residual capacity ⁴¹ Recurrent respiratory infections Altered properties of surfactant ²²	
Impaired cough	Paralysis of abdominal muscles ¹⁷ Reduced vital capacity	
Increased secretions and bronchial tone	Decreased sympathetic tone ²⁸	

Respiratory Dysfunction by Level

Possible impacts – depends on type

C1-C2

- Long-term ventilation, likely with trach, due to diaphragm paralysis
- No active inspiration
- Impaired neck flexion & extension

C3-C4

- No volitional movement of intercostals & abdominals
- Limited diaphragm functionality for active inspiration
- 51-83% able to wean from ventilator
- Continued weak independent respiration

С3

- Decreased sensation to neck
- Decreased ability to tilt head right/left

C4

Decreased ability to raise shoulders

Respiratory Dysfunction by Level

Possible impacts – depends on type

C5-C7

- Good diaphragm control and functionality
- Limited abdominal and intercostal functionality
- 2/3 need initial ventilation, with variable strength of respiration after weaning

T1-T5

- Impaired control of resting respiration
- Weak/ineffective cough

L1 and below

No respiratory impairment

T6-T12

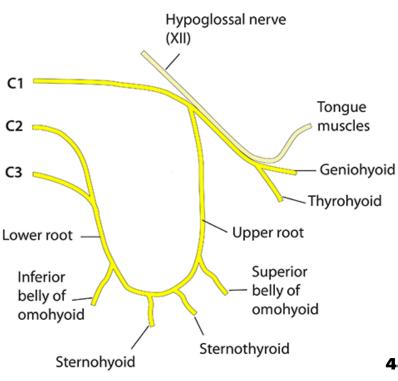
Weak/ineffective cough

SLP-Led/Implemented Interventions for Respiration

Respiratory Muscle Strength Training

Position Changes

Compensatory strategies


Laryngeal Function

ANSA CERVICALIS

Respiratory, neurological, and mechanical disruption

Examples:

- **Bulbar palsy** ٠
- Glottal/tracheal stenosis
- Ansa cervicalis involvement •

Be Aware and Prepared

Key impairment may be ineffective pharyngeal pressures

C4 and above, ACDF = red flags in chart review

Thorough assessment of breath support & cough

Absent cough reflex or vagus nerve palsy decreases bedside s/s

Instrumental assessment early (similar to trach)

Track progress objectively & with self-report measures

Assessment & Progress Reporting Measures

Objective

- ASHA NOMS
- Cranial nerve exam
- Dysphagia Outcome and Severity Scale
- Functional Oral Intake Score
- Mann Assessment of Swallowing Ability
- Yale Swallow Protocol

Subjective (PROMs)

- EAT-10
- Deglutition Handicap Index
- Dysphagia Handicap Index
- GERD Impact Questionnaire
- MD Anderson Dysphagia Inventory
- PROMIS-GI
- Reflux Disease Questionnaire

Treatment

Goal Targets

Breath Support/Control

- O2 saturation
- Steady respiratory rate
- Exhale after swallow
- Increased MPT
- Improvement on RMST

Compensatory Strategies & Diet Mod

- Rate of intake
- Bolus size changes
- Strategies effective on instrumental exam
- Diet textures (not just safest but also most comfortable)

Pt Education

- Pt-specific s/s aspiration and risks of aspiration PNA
- Respiratory health and dysphagia related to acute and chronic SCI

48

Example: "Pt will **maintain adequate respiratory**-swallow coordination over course of meal of [texture] with modified independence as exhibited by **ste**ad**y respiratory rate and O2 saturation over course** of intake."

Cognition

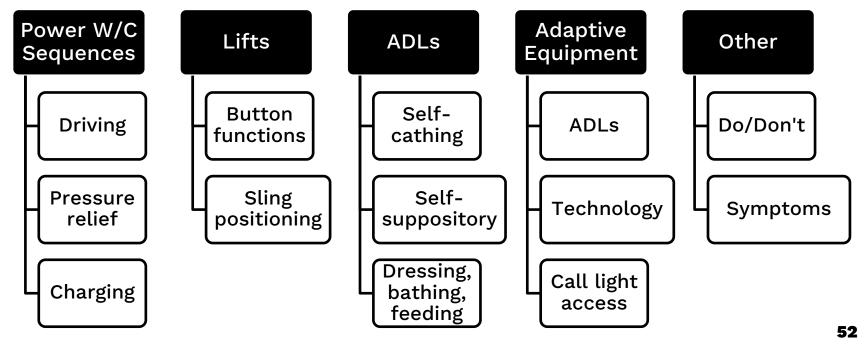
Including co-occurring brain injury

Goal Targets

At acute and sub-acute/acute rehab levels, general cognitive goals are to:

- Attend adequately to therapy sessions, conversations with other disciplines
- Recall and apply new information specific to SCI
- Plan for SCI-specific changes to daily routines

Ultimately, when patients leave acute rehabilitation the goal is for them to be expert enough in their condition and needs that **they can direct their own care**

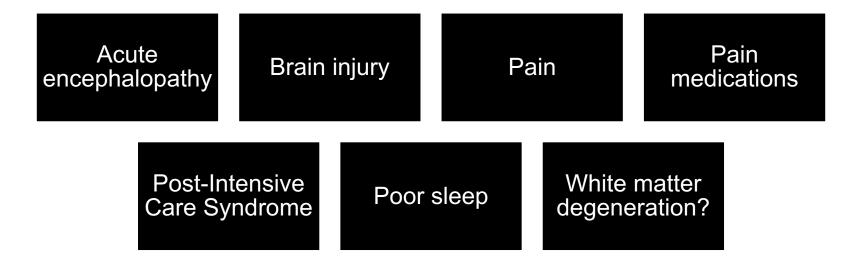

Novel Functional Information Recall Targets

At my acute rehab, initial goals are almost always:

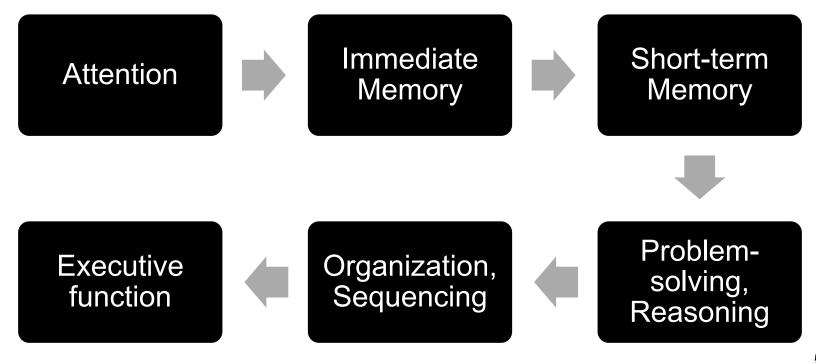
- 1. Pressure relief timing and techniques to reduce risk of pressure ulcers
- 2. Transfer sequences to reduce reliance on lifts
- 3. Recall **why** bowel and bladder programs need to happen to improve adherence

Collaborate with the whole team—there is so much for people with SCI to learn, and all of it is important.

Novel Functional Information Recall Targets


SCI Daily Routines

- Morning and evening skin checks
- Pressure relief (every 30 mins out of bed, every 2 hours in bed)
- Bowel program
- Bladder program


Extra time to:

- Dress/undress
- Groom
- Bathe
- Prepare meals
- Do household chores
- Complete community ADLs

Etiologies

Co-Occurring Brain Injury Rates

- Incidence ranges from 16-59% for TBI
- mTBI is under-identified in acute:

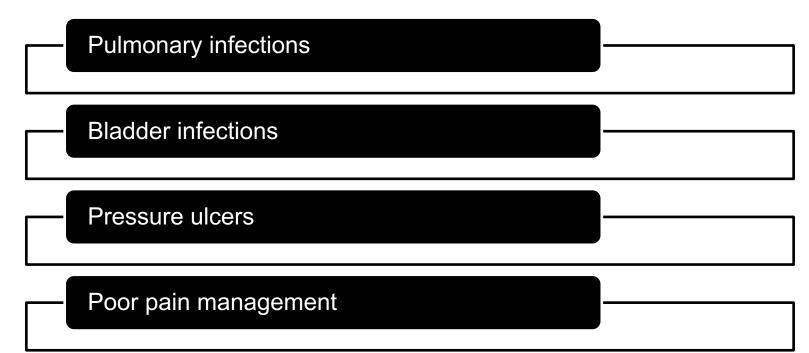
34-58.5% of mTBI not identified

75% missed in non-MVC admits

42.9% missed in MVC admits

Moderate and severe injuries also missed (6% and 10% respectively)

Co-Occurring BI Impacts


Good news:

long-term outcomes for TBI with SCI similar to those with SCI alone

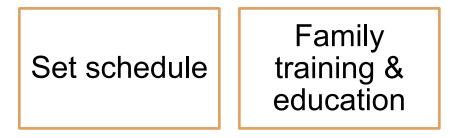
Bad news:

TBI with SCI prolongs acute rehabilitation stays, with increased complications and dependence on caregivers

Complications of BI with SCI

Red Flags for TBI

Consider undiagnosed TBI in SCI patients with any cognitive concerns without etiology or explained by other factors (pain, pain meds, delirium)


In chart review:

- Alcohol intoxication at time of injury
- Documented loss of • consciousness
- Post-traumatic amnesia
 Complete TSCI

- Traumatic mechanism of injury
- Results of medical imaging*
- Initial GCS score of <15

IDT Interventions for BI with SCI

Summary/Q&A

You're good, right?

Resources

Separate packet includes:

- One-page quick reference guide
- ASIA Impairment Scale scoring sheet
- Select charts/tables from presentation

- Medication side effects chart
- Functional PT/OT goals for complete SCI at all levels for ideas on cognitive targets

Highly recommend:

- Model Systems Knowledge Translation Center resources at msktc.org/sci
- Speech Uncensored Podcast episode 119: "Swallowing Challenges after Cervical SCI with Michelle Dehgan"
- TIRR-Memorial Herman SCI CEUs "Topics in SCI for SLPs"
- International Spinal Cord Society elearnSCI Modules. ElearnSCI.org

Attributions

- Slide 1 image: Flaticon.com
- Slide 7 image: <u>https://medium.com/@anhminhdo/4-levels-of-competence-fb1bbddd945d</u>
- Slide 11 image: (*MSKTC SCI Booklet*, 2021)
- Slide 12 image: ChristopherReeve.org
- Slide 13 image: (Brouwers et al., 2017)
- Slide 14 image: (Dermatomes and Myotomes, n.d.)
- Slide 17 image: (Kalsi-Ryan, 2018)
- Slide 20 image: Unknown. Nursing Education Consultants publication from 2007.
- Slide 23 image: ("Heterotopic Ossification and Spinal Cord Injuries," 2020)
- Slide 24 image: (Spinal Cord Injury (SCI) and Pressure Injuries, n.d.)
- Slide 41 image: (ACDF | Marina Spine Center | Cedars-Sinai Marina Del Rey Hospital, n.d.)
- Slide 42 images: Manufacturer websites
- Slide 43 image: (Halani et al., 2016)
- Slide 47 image: (Randelman et al., 2021)
- Slide 55 images: Manufacturer websites
- Slide 57 image: (Instant Anatomy Head and Neck Nerves Somatic Nerves Ansa Cervicalis, n.d.)

Abel, R., Ruf, S., & Spahn, B. (2004). Cervical Spinal Cord Injury and Deglutition Disorders. *Dysphagia*, **19**(2), 5–94. <u>https://doi.org/10.1007/s00455-003-0511-y</u>

ACDF | Marina Spine Center | Cedars-Sinai Marina del Rey Hospital. (n.d.). Retrieved March 7, 2022, from <u>https://www.marinahospital.com/spine/acdf</u>

Anderson, K. K., & Arnold, P. M. (2013). Oropharyngeal Dysphagia after Anterior Cervical Spine Surgery: A Review. **Global Spine Journal**, **3**(4), 273–285. <u>https://doi.org/10.1055/s-0033-1354253</u>

Ankylosing spondylitis / Genetic and Rare Diseases Information Center (GARD) – an NCATS Program. (n.d.). Retrieved February 18, 2022, from https://rarediseases.info.nih.gov/diseases/9518/ankylosing-spondylitis

Arachnoiditis Information Page | National Institute of Neurological Disorders and **Stroke**. (n.d.). Retrieved February 18, 2022, from https://www.ninds.nih.gov/Disorders/All-Disorders/Arachnoiditis-Information-Page

Arora, S., Flower, O., Murray, N. P. S., & Lee, B. B. (2012). Critical Care and Resuscitation. *Critical Care and Resuscitation*, **14**(1), 64–73.

Brady, S., Miserendino, R., Statkus, D., Springer, T., Hakel, M., & Stambolis, V. (2004). *Predictors to Dysphagia and Recovery After Cervical Spinal Cord Injury During Acute Rehabilitation*. **4**(1), 11.

Brouwers, E., van de Meent, H., Curt, A., Starremans, B., Hosman, A., & Bartels, R. (2017). Definitions of traumatic conus medullaris and cauda equina syndrome: A systematic literature review. *Spinal Cord*, *55*(10), 886–890.

https://doi.org/10.1038/sc.2017.54

Budisin, B., Bradbury, C. C. L. B., Sharma, B., Hitzig, S. L., Mikulis, D., Craven, C., McGilivray, C., Corbie, J., & Green, R. E. (2016). Traumatic Brain Injury in Spinal Cord Injury: Frequency and Risk Factors. **The Journal of Head Trauma Rehabilitation**, **31**(4), E33-42. <u>https://doi.org/10.1097/HTR.00000000000153</u>

Dehgan, M. (n.d.). **Swallowing Challenges After Cervical SCI (Trauma/Surgery)**. Swallowing Challenges After Cervical SCI (Trauma/Surgery). Retrieved April 22, 2021, from <u>https://education.memorialhermann.org/profile/web/index.cfm?PKwebID=0x6366abcd</u> &varPage=home

ELearnSCI :: Home. (n.d.). Retrieved February 18, 2022, from <u>http://www.elearnsci.org/</u>

Gaillard, F., & Worsley, C. (n.d.). **Spondylodiscitis | Radiology Reference Article | Radiopaedia.org**. Radiopaedia. https://doi.org/10.53347/rID-4966/

Guo, Y., Gao, F., Liu, Y., Guo, H., Yu, W., Chen, Z., Yang, M., Du, L., Yang, D., & Li, J. (2019). White Matter Microstructure Alterations in Patients With Spinal Cord Injury Assessed by Diffusion Tensor Imaging. *Frontiers in Human Neuroscience*, *13*. <u>https://www.frontiersin.org/article/10.3389/fnhum.2019.00011</u>

Halani, S. H., Baum, G. R., Riley, J. P., Pradilla, G., Refai, D., Rodts, G. E., & Ahmad, F. U. (2016). Esophageal perforation after anterior cervical spine surgery: A systematic review of the literature. *Journal of Neurosurgery. Spine*, *25*(3), 285– 291. <u>https://doi.org/10.3171/2016.1.SPINE15898</u>

Hasan, G., & Alves, O. L. (2022). *Dysphagia Following Anterior Cervical Spine Surgery*. IntechOpen. <u>https://doi.org/10.5772/intechopen.101799</u>

Heterotopic Ossification and Spinal Cord Injuries. (2020, June 10). **SCI Progress**. https://sciprogress.com/heterotopic-ossification/

How the spinal cord works. (n.d.). Reeve Foundation. Retrieved February 20, 2022, from https://www.christopherreeve.org/living-with-paralysis/health/how-the-spinal-cord-works

human-nervous-system-medical-vector-illustration-diagram-with-parasympatheticand-sympathetic nerves and all connected inner organs. Stock illustration. (n.d.). istockphoto. Retrieved January 28, 2022, from sympathetic nerves and all connected inner organs. stock illustration

Instant Anatomy—Head and Neck—Nerves—Somatic nerves—Ansa cervicalis. (n.d.). Retrieved March 7, 2022, from https://www.instantanatomy.net/headneck/nerves/somatic/ansacervicalis.html

Iruthayarajah, J., McIntyre, A., Mirkowski, M., Welch-West, P., Loh, E., & Teasell, R. (2018). Risk factors for dysphagia after a spinal cord injury: A systematic review and metaanalysis. *Spinal Cord*, *56*(12), 1116–1123. https://doi.org/10.1038/s41393-018-0170-3

Kalsi-Ryan, S. (2018). International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) *. In A. R. Vaccaro, C. G. Fisher, & J. R. Wilson (Eds.), **50 Landmark Papers** (1st ed., pp. 83–86). CRC Press. https://doi.org/10.1201/9781315154053-16

Kim, C.-Y., Lee, J.-S., Kim, H.-D., & Lee, D.-J. (2016). Short-term effects of respiratory muscle training combined with abdominal drawing-in maneuver on decreased pulmonary function in people with chronic spinal cord injury: A pilot randomized controlled trial. *The Journal of Spinal Cord Medicine*, *40*. https://doi.org/10.1080/10790268.2016.1198576

Klebine, P., Smitherman, O., & Gernenz, L. (n.d.). *Understanding Spinal Cord Injury, Part 2—Recovery and Rehabilitation*. Model Systems Knowledge Translation Center. Retrieved January 15, 2021, from https://msktc.org/sci/factsheets/Understanding_SCI_Part_2

Kluger, J. (2012, July 31). A Breakthrough at Last for Spinal-Cord-Injury Research? *Time*. <u>https://healthland.time.com/2012/07/31/a-breakthrough-at-last-for-spinal-cord-injury-research/</u>

Ko, H.-Y. (2019). Concurrent Traumatic Brain Injury with Spinal Cord Injury. In H.-Y. Ko (Ed.), *Management and Rehabilitation of Spinal Cord Injuries* (pp. 455–460). Springer. <u>https://doi.org/10.1007/978-981-10-7033-4_34</u>

Leukodystrophy. (n.d.). **NORD (National Organization for Rare Disorders)**. Retrieved March 5, 2022, from <u>https://rarediseases.org/rare-diseases/leukodystrophy/</u>

Macciocchi, S., Seel, R., Thompson, N., Byams, R., & Bowman, B. (2008). Spinal Cord Injury and Co-Occurring Traumatic Brain Injury: Assessment and Incidence. *Archives of Physical Medicine and Rehabilitation*, **89**, 1350–1357. https://doi.org/10.1016/j.apmr.2007.11.055

McRae, J., Smith, C., Beeke, S., & Emmanuel, A. (2019). Oropharyngeal dysphagia management in cervical spinal cord injury patients: An exploratory survey of variations to care across specialised and non-specialised units. **Spinal Cord Series and Cases**, **5**, 31. <u>https://doi.org/10.1038/s41394-019-0175-y</u>

Mitochondrial Myopathy Fact Sheet / National Institute of Neurological Disorders and Stroke. (n.d.). Retrieved March 5, 2022, from <u>https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-</u> <u>Sheets/Mitochondrial-Myopathy-Fact-Sheet</u>

Neville, A. L., Crookes, P., Velmahos, G. C., Vlahos, A., Theodorou, D., & Lucas, C. E. (2005). Esophageal dysfunction in cervical spinal cord injury: A potentially important mechanism of aspiration. *The Journal of Trauma: Injury, Infection, and Critical Care*, *59*(4), 905–911. https://doi.org/10.1097/01.ta.0000188086.02488.b1

Nott, M., Baguley, I., Heriseanu, R., Weber, G., Middleton, J., Meares, S., Batchelor, J., Jones, A., Boyle, C., & Chilko, S. (2014). Effects of Concomitant Spinal Cord Injury and Brain Injury on Medical and Functional Outcomes and Community Participation. **Topics** *in Spinal Cord Injury Rehabilitation*, **20**(3), 225–235. <u>https://doi.org/10.1310/sci2003-</u> <u>225</u>

On the Case—Radiology Today Magazine. (n.d.). Retrieved March 7, 2022, from https://www.radiologytoday.net/archive/rt0818p30.shtml

Partida, E., Mironets, E., Hou, S., & Tom, V. J. (2016). Cardiovascular dysfunction following spinal cord injury. *Neural Regeneration Research*, *11*(2), 189–194. <u>https://doi.org/10.4103/1673-5374.177707</u>

Patel, D. A., Sharda, R., Hovis, K. L., Nichols, E. E., Sathe, N., Penson, D. F., Feurer, I. D., McPheeters, M. L., Vaezi, M. F., & Francis, D. O. (2017). Patient-reported outcome measures in dysphagia: A systematic review of instrument development and validation?

Randelman, M., Zholudeva, L. V., Vinit, S., & Lane, M. A. (2021). Respiratory Training and Plasticity After Cervical Spinal Cord Injury. *Frontiers in Cellular Neuroscience*, **15**, 700821. <u>https://doi.org/10.3389/fncel.2021.700821</u>

Resources Offered by the MSKTC To Support Individuals Living With Spinal Cord Injury. (2021). Model Systems Knowledge Translation Center. <u>https://msktc.org/sites/default/files/MSKTC%20SCI%20Booklet_English_fmt_080521</u> <u>0.pdf</u>

Rihn, J. A., Kane, J., Albert, T. J., Vaccaro, A. R., & Hilibrand, A. S. (2011). What Is the Incidence and Severity of Dysphagia After Anterior Cervical Surgery? *Clinical Orthopaedics & Related Research*, *469*(3), 658–665. https://doi.org/10.1007/s11999-010-1731-8

Riley, L. H., Skolasky, R. L., Albert, T. J., Vaccaro, A. R., & Heller, J. G. (2005). Dysphagia After Anterior Cervical Decompression and Fusion: Prevalence and Risk Factors From a Longitudinal Cohort Study (Presented at the 2004 CSRS Meeting). **Spine**, **30**(22), 2564–2569. <u>https://doi.org/10.1097/01.brs.0000186317.86379.02</u>

Sharma, B., Bradbury, C., Mikulis, D., & Green, R. (2014). Missed diagnosis of traumatic brain injury in patients with traumatic spinal cord injury. *Journal of Rehabilitation Medicine*, *46*(4), 370–373. <u>https://doi.org/10.2340/16501977-1261</u>

Speyer, R., Cordier, R., Farneti, D., Nascimento, W., Pilz, W., Verin, E., Walshe, M., & Woisard, V. (2021). White Paper by the European Society for Swallowing Disorders: Screening and Non-instrumental Assessment for Dysphagia in Adults. **Dysphagia**, 1– 17. https://doi.org/10.1007/s00455-021-10283-7

Spinal cord injury. (n.d.). Christopher & Dana Reeve Foundation. Retrieved January 28, 2022, from <u>https://www.christopherreeve.org/living-with-</u>paralysis/health/causes-of-paralysis/spinal-cord-injury

Spinal Cord Injury Details. (n.d.). Understanding Spinal Cord Injury. Retrieved January 28, 2022, from <u>https://www.spinalinjury101.org/details</u>

Spinal Cord Injury (SCI) and Pressure Injuries. (n.d.). Retrieved March 5, 2022, from <u>https://www.fairview.org/Patient-</u> <u>Education/Articles/English/s/p/i/n/a/Spinal_Cord_Injury_SCI_and_Pressure_Injurie</u> <u>s_41153</u>

Spinal nerves. (n.d.). Kenhub. Retrieved February 20, 2022, from https://www.kenhub.com/en/library/anatomy/spinal-nerves

Stambolis, V., Brady, S., Klos, D., Wesling, M., Fatianov, T., & Hildner, C. (2003). The Effects of Cervical Bracing Upon Swallowing in Young, Normal, Healthy Volunteers. **Dysphagia**, **18**(1), 39–45. https://doi.org/10.1007/s00455-002-0083-2

Syringomyelia Fact Sheet / National Institute of Neurological Disorders and Stroke. (n.d.). Retrieved February 18, 2022, from <u>https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Syringomyelia-Fact-Sheet</u>

The Spinal Cord. (2014, September 20). **ONLINE SPINE ACADEMY**. <u>https://neurospine.wordpress.com/basic-spine-data/basic-spine-anatomy/the-spinal-cord/</u>

Transverse Myelitis Fact Sheet | National Institute of Neurological Disorders and Stroke. (n.d.). Retrieved February 18, 2022, from https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Transverse-Myelitis-Fact-Sheet

76

Understanding the Stages of Spinal Shock. (2017, December 9). The Spine Institute CSR. <u>https://www.laspine.com/stages-of-spinal-shock/</u>

Wang, T. Y., Park, C., Zhang, H., Rahimpour, S., Murphy, K. R., Goodwin, C. R., Karikari, I. O., Than, K. D., Shaffrey, C. I., Foster, N., & Abd-El-Barr, M. M. (2021). Management of Acute Traumatic Spinal Cord Injury: A Review of the Literature. *Frontiers in Surgery*, *8*, 698736. <u>https://doi.org/10.3389/fsurg.2021.698736</u>

Warnock, A., Toomey, L. M., Wright, A. J., Fisher, K., Won, Y., Anyaegbu, C., & Fitzgerald, M. (2020). Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. *Journal of Neurotrauma*, **37**(5), 739–769. <u>https://doi.org/10.1089/neu.2019.6890</u>

Weil, Z. M., Corrigan, J. D., & Karelina, K. (2018). Alcohol Use Disorder and Traumatic Brain Injury. *Alcohol Research : Current Reviews*, **39**(2), 171–180.

Zheng, W., Chen, Q., Chen, X., Wan, L., Qin, W., Qi, Z., Chen, N., & Li, K. (2017). Brain White Matter Impairment in Patients with Spinal Cord Injury. *Neural Plasticity*, **2017**, 4671607. <u>https://doi.org/10.1155/2017/4671607</u>

Ziegler, G., Grabher, P., Thompson, A., Altmann, D., Hupp, M., Ashburner, J., Friston, K., Weiskopf, N., Curt, A., & Freund, P. (2018). Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. *Neurology*, **90**(14), e1257–e1266. <u>https://doi.org/10.1212/WNL.00000000005258</u>

Ziu, E., & Mesfin, F. B. (2022). Spinal Shock. In *StatPearls*. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK448163/